A TabPFN-based intrusion detection system for the industrial internet of things

Author:

Ruiz-Villafranca Sergio,Roldán-Gómez José,Gómez Juan Manuel Castelo,Carrillo-Mondéjar Javier,Martinez José Luis

Abstract

AbstractThe industrial internet of things (IIoT) has undergone rapid growth in recent years, which has resulted in an increase in the number of threats targeting both IIoT devices and their connecting technologies. However, deploying tools to counter these threats involves tackling inherent limitations, such as limited processing power, memory, and network bandwidth. As a result, traditional solutions, such as the ones used for desktop computers or servers, cannot be applied directly in the IIoT, and the development of new technologies is essential to overcome this issue. One approach that has shown potential for this new paradigm is the implementation of intrusion detection system (IDS) that rely on machine learning (ML) techniques. These IDSs can be deployed in the industrial control system or even at the edge layer of the IIoT topology. However, one of their drawbacks is that, depending on the factory’s specifications, it can be quite challenging to locate sufficient traffic data to train these models. In order to address this problem, this study introduces a novel IDS based on the TabPFN model, which can operate on small datasets of IIoT traffic and protocols, as not in general much traffic is generated in this environment. To assess its efficacy, it is compared against other ML algorithms, such as random forest, XGBoost, and LightGBM, by evaluating each method with different training set sizes and varying numbers of classes to classify. Overall, TabPFN produced the most promising outcomes, with a 10–20% differentiation in each metric. The best performance was observed when working with 1000 training set samples, obtaining an F1 score of 81% for 6-class classification and 72% for 10-class classification.

Funder

European Social Fund Plus

Junta de Comunidades de Castilla-La Mancha

European Regional Development Fund

European Union Next Generation

Fundación Agencia Aragonesa para la Investigación y el Desarrollo

Universidad Politécnica de Madrid

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3