Scalable performance analysis method for SPMD applications

Author:

Tirado FelipeORCID,Wong Alvaro,Rexachs Dolores,Luque Emilio

Abstract

AbstractThe analysis of parallel scientific applications allows us to understand their computational and communication behavior. One way of obtaining performance information is through performance tools. One such tool is parallel application signatures for performance prediction (PAS2P), based on parallel application repeatability, focusing on performance analysis and prediction. The same resources that execute the parallel application are used to perform its analysis, creating a machine independent model of the application and identifying its common patterns. However, the analysis is costly in terms of execution time due to the high number of synchronization communications performed by PAS2P, degrading performance as the number of processes increases. To solve this problem, we propose a model that reduces data dependency between processes, reducing the number of communications performed by PAS2P in the analysis stage and taking advantage of the characteristics of single program, multiple sata applications. Our analysis proposal allows us to decrease the analysis time by 29 times when the application scales to 256 processes, while keeping error levels below 11% in the runtime prediction. It is important to mention that the analysis time is not considerably affected by increasing the number of application processes.

Funder

Agencia Estatal de Investigación

Universitat Autònoma de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance model for irregular parallel applications.;2023 42nd IEEE International Conference of the Chilean Computer Science Society (SCCC);2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3