Author:
Kehrer Stefan,Blochinger Wolfgang
Abstract
AbstractElasticity is considered to be the most beneficial characteristic of cloud environments, which distinguishes the cloud from clusters and grids. Whereas elasticity has become mainstream for web-based, interactive applications, it is still a major research challenge how to leverage elasticity for applications from the high-performance computing (HPC) domain, which heavily rely on efficient parallel processing techniques. In this work, we specifically address the challenges of elasticity for parallel tree search applications. Well-known meta-algorithms based on this parallel processing technique include branch-and-bound and backtracking search. We show that their characteristics render static resource provisioning inappropriate and the capability of elastic scaling desirable. Moreover, we discuss how to construct an elasticity controller that reasons about the scaling behavior of a parallel system at runtime and dynamically adapts the number of processing units according to user-defined cost and efficiency thresholds. We evaluate a prototypical elasticity controller based on our findings by employing several benchmarks for parallel tree search and discuss the applicability of the proposed approach. Our experimental results show that, by means of elastic scaling, the performance can be controlled according to user-defined thresholds, which cannot be achieved with static resource provisioning.
Funder
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Information Systems,Theoretical Computer Science,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献