Comparative study between exact and metaheuristic approaches for virtual machine placement process as knapsack problem
Author:
Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Information Systems,Theoretical Computer Science,Software
Link
http://link.springer.com/content/pdf/10.1007/s11227-019-02847-0.pdf
Reference49 articles.
1. Kant K (2009) Data center evolution: a tutorial on state of the art, issues, and challenges. Comput Netw 53(17):2939–2965
2. Usmani Z, Singh S (2016) A survey of virtual machine placement techniques in a cloud data center. Procedia Comput Sci 78:491–498 (1st International Conference on Information Security & Privacy 2015)
3. Bobroff N, Kochut A, Beaty K (2007) Dynamic placement of virtual machines for managing sla violations. In: 2007 10th IFIP/IEEE International Symposium on Integrated Network Management, pp 119–128
4. Shawish A, Salama M (2014) Cloud computing: paradigms and technologies. Springer, Berlin, pp 39–67
5. Wang X, Wang Y (2011) Coordinating power control and performance management for virtualized server clusters. IEEE Trans Parallel Distrib Syst 22(2):245–259
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Solving the 0/1 Knapsack Problem Using Metaheuristic and Neural Networks for the Virtual Machine Placement Process in Cloud Computing Environment;Mathematical Problems in Engineering;2023-06-08
2. Improved whale optimization variants for SLA-compliant placement of virtual machines in cloud data centers;Multimedia Tools and Applications;2023-05-13
3. Adaptive Resource Dimensioning with Joint Workload Placement for Cloud Stack Layers;2022 9th International Conference on Future Internet of Things and Cloud (FiCloud);2022-08
4. Modeling the correlation between the workload and the power consumed by a server using stochastic and non‐parametric approaches;Software: Practice and Experience;2022-06-27
5. A prediction-based model for virtual machine live migration monitoring in a cloud datacenter;Computing;2021-08-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3