Implementation of a motion estimation algorithm for Intel FPGAs using OpenCL

Author:

de Castro Manuel,Osorio Roberto R.,Vilariño David L.,Gonzalez-Escribano Arturo,Llanos Diego R.

Abstract

AbstractMotion Estimation is one of the main tasks behind any video encoder. It is a computationally costly task; therefore, it is usually delegated to specific or reconfigurable hardware, such as FPGAs. Over the years, multiple FPGA implementations have been developed, mainly using hardware description languages such as Verilog or VHDL. Since programming using hardware description languages is a complex task, it is desirable to use higher-level languages to develop FPGA applications.The aim of this work is to evaluate OpenCL, in terms of expressiveness, as a tool for developing this kind of FPGA applications. To do so, we present and evaluate a parallel implementation of the Block Matching Motion Estimation process using OpenCL for Intel FPGAs, usable and tested on an Intel Stratix 10 FPGA. The implementation efficiently processes Full HD frames completely inside the FPGA. In this work, we show the resource utilization when synthesizing the code on an Intel Stratix 10 FPGA, as well as a performance comparison with multiple CPU implementations with varying levels of optimization and vectorization capabilities. We also compare the proposed OpenCL implementation, in terms of resource utilization and performance, with estimations obtained from an equivalent VHDL implementation.

Funder

Consejerı́a de Educación of Junta de Castilla y León, Spain

Ministerio de Economı́a, Industria y Competitividad, Spain, European Regional Development Fund (ERDF) program

Ministerio de Ciencia e Innovación, Spain

Xunta de Galicia (Spain) and FEDER funds of the EU

Ministerio de Economı́a, Industria y Competitividad, Spain

Universidad de Valladolid

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing a Graphics Accelerator with Heterogeneous Architecture;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3