Distributed out-of-memory NMF on CPU/GPU architectures

Author:

Boureima Ismael,Bhattarai Manish,Eren Maksim,Skau Erik,Romero Philip,Eidenbenz Stephan,Alexandrov Boian

Abstract

AbstractWe propose an efficient distributed out-of-memory implementation of the non-negative matrix factorization (NMF) algorithm for heterogeneous high-performance-computing systems. The proposed implementation is based on prior work on NMFk, which can perform automatic model selection and extract latent variables and patterns from data. In this work, we extend NMFk by adding support for dense and sparse matrix operation on multi-node, multi-GPU systems. The resulting algorithm is optimized for out-of-memory problems where the memory required to factorize a given matrix is greater than the available GPU memory. Memory complexity is reduced by batching/tiling strategies, and sparse and dense matrix operations are significantly accelerated with GPU cores (or tensor cores when available). Input/output latency associated with batch copies between host and device is hidden using CUDA streams to overlap data transfers and compute asynchronously, and latency associated with collective communications (both intra-node and inter-node) is reduced using optimized NVIDIA Collective Communication Library (NCCL) based communicators. Benchmark results show significant improvement, from 32X to 76x speedup, with the new implementation using GPUs over the CPU-based NMFk. Good weak scaling was demonstrated on up to 4096 multi-GPU cluster nodes with approximately 25,000 GPUs when decomposing a dense 340 Terabyte-size matrix and an 11 Exabyte-size sparse matrix of density $$10^{-6}$$ 10 - 6 .

Funder

U.S. Department of Energy National Nuclear Security Administration

LANL LDRD

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Catch'em all: Classification of Rare, Prominent, and Novel Malware Families;2024 12th International Symposium on Digital Forensics and Security (ISDFS);2024-04-29

2. Correction to: Distributed out-of-memory NMF on CPU/GPU architectures;The Journal of Supercomputing;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3