SWEclat: a frequent itemset mining algorithm over streaming data using Spark Streaming

Author:

Xiao WenORCID,Hu Juan

Abstract

AbstractFinding frequent itemsets in a continuous streaming data is an important data mining task which is widely used in network monitoring, Internet of Things data analysis and so on. In the era of big data, it is necessary to develop a distributed frequent itemset mining algorithm to meet the needs of massive streaming data processing. Apache Spark is a unified analytic engine for massive data processing which has been successfully used in many data mining fields. In this paper, we propose a distributed algorithm for mining frequent itemsets over massive streaming data named SWEclat. The algorithm uses sliding window to process streaming data and uses vertical data structure to store the dataset in the sliding window. This algorithm is implemented by Apache Spark and uses Spark RDD to store streaming data and dataset in vertical data format, so as to divide these RDDs into partitions for distributed processing. Experimental results show that SWEclat algorithm has good acceleration, parallel scalability and load balancing.

Funder

2019 key project of natural science research in universities in anhui province

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Reference25 articles.

1. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp 207–216

2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, vol 1215, pp 487–499

3. Park JS, Chen MS, Yu PS (1997) Using a hash-based method with transaction trimming for mining association rules. IEEE Trans Knowl Data Eng 9(5):813–825

4. Ozel SA, Guvenir HA (2001) An algorithm for mining association rules using perfect hashing and database pruning. In: 10th Turkish Symposium on Artificial Intelligence and Neural Networks. Springer, Berlin, pp 257–264

5. Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, pp 255–264

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3