Author:
Quislant Ricardo,Fernandez Ivan,Gutierrez Eladio,Plata Oscar
Abstract
AbstractTime series analysis is an important research topic and a key step in monitoring and predicting events in many fields. Recently, the Matrix Profile method, and particularly two of its Euclidean-distance-based implementations—SCRIMP and SCAMP—have become the state-of-the-art approaches in this field. Those algorithms bring the possibility of obtaining exact motifs and discords from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. While matrix profile is embarrassingly parallelizable, we find that auto-vectorization techniques fail to fully exploit the SIMD capabilities of modern CPU architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP implementations based on AVX2 and AVX-512 extensions, which we combine with multithreading techniques aimed at exploiting the potential of the underneath architectures. Our experimental evaluation, conducted using real data, shows a performance improvement of more than 4$$\times$$
×
with respect to the auto-vectorization.
Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Information Systems,Theoretical Computer Science,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献