SA-ASBA: a hybrid model for aspect-based sentiment analysis using synthetic attention in pre-trained language BERT model with extreme gradient boosting
Author:
Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Information Systems,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s11227-022-04881-x.pdf
Reference70 articles.
1. Pang B, Lee L (2008) Opinion mining and sentiment analysis. Found Trends Inf Retr 2:1–2
2. Guixian X, Zhang Z, Zhang T, Shaona Yu, Meng Y, Chen S (2022) Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning. Know-Based Syst 245:108586
3. Mayur W, Sekhara RAC, Chaitanya K (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev 7:1–50
4. Schouten K, Frasincar F (2015) Survey on aspect-level sentiment analysis. IEEE Trans Know Data Eng 28(3):813–830
5. Dou Z-Y (2017) Capturing user and product information for document level sentiment analysis with deep memory network. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 521–526
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cognitive-Inspired Deep Learning Models for Aspect-Based Sentiment Analysis: A Retrospective Overview and Bibliometric Analysis;Cognitive Computation;2024-08-06
2. KHACDD: a knowledge-based hybrid method for multilabel sentiment analysis on complex sentences using attentive capsule and dual structured recurrent network;Neural Computing and Applications;2024-07-09
3. A Review on Sentiment Analysis Techniques and Approaches;International Journal of Innovative Science and Research Technology (IJISRT);2024-07-09
4. Adversarial attacks and defenses for large language models (LLMs): methods, frameworks & challenges;International Journal of Multimedia Information Retrieval;2024-06-25
5. Assessing a BERT-based model for analyzing subjectivity and classifying academic articles;Multimedia Tools and Applications;2024-06-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3