E2LG: a multiscale ensemble of LSTM/GAN deep learning architecture for multistep-ahead cloud workload prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Information Systems,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s11227-021-03723-6.pdf
Reference41 articles.
1. Kumar J, Goomer R, Singh AK (2018) Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters. Procedia Comput Sci 125:676–682. https://doi.org/10.1016/j.procs.2017.12.087
2. Zhang Q, Yang LT, Yan Z, Chen Z, Li P (2018) An efficient deep learning model to predict cloud workload for industry informatics. IEEE Trans Ind Inform 14:3170–3178. https://doi.org/10.1109/TII.2018.2808910
3. Mozo A, Ordozgoiti B, Gómez-Canaval S (2018) Forecasting short-term data center network traffic load with convolutional neural networks. PLoS ONE. https://doi.org/10.1371/journal.pone.0191939
4. Kumar J, Singh AK, Buyya R (2020) Ensemble learning based predictive framework for virtual machine resource request prediction. Neurocomputing. https://doi.org/10.1016/j.neucom.2020.02.014
5. Jeddi S, Sharifian S (2020) A hybrid wavelet decomposer and GMDH-ELM ensemble model for network function virtualization workload forecasting in cloud computing. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2019.105940
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Application-Oriented Cloud Workload Prediction: A Survey and New Perspectives;Tsinghua Science and Technology;2025-02
2. A Comparative Analysis of Generative Adversarial Networks for Generating Cloud Workloads;2024 IEEE 17th International Conference on Cloud Computing (CLOUD);2024-07-07
3. A workload prediction model for reducing service level agreement violations in cloud data centers;Decision Analytics Journal;2024-06
4. EvoGWP: Predicting Long-Term Changes in Cloud Workloads Using Deep Graph-Evolution Learning;IEEE Transactions on Parallel and Distributed Systems;2024-03
5. An empirical study on construction emergency disaster management and risk assessment in shield tunnel construction project with big data analysis;International Journal of Data Mining and Bioinformatics;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3