Irregular accesses reorder unit: improving GPGPU memory coalescing for graph-based workloads

Author:

Segura AlbertORCID,Arnau Jose Maria,Gonzalez Antonio

Abstract

AbstractGPGPU architectures have become the dominant platform for massively parallel workloads, delivering high performance and energy efficiency for popular applications such as machine learning, computer vision or self-driving cars. However, irregular applications, such as graph processing, fail to fully exploit GPGPU resources due to their divergent memory accesses that saturate the memory hierarchy. To reduce the pressure on the memory subsystem for divergent memory-intensive applications, programmers must take into account SIMT execution model and memory coalescing in GPGPUs, devoting significant efforts in complex optimization techniques. Despite these efforts, we show that irregular graph processing still suffers from low GPGPU performance. We observe that in many irregular applications the mapping of data to threads can be safely changed. In other words, it is possible to relax the strict relationship between thread and data processed to reduce memory divergence. Based on this observation, we propose the Irregular accesses Reorder Unit (IRU), a novel hardware extension tightly integrated in the GPGPU pipeline. The IRU reorders data processed by the threads on irregular accesses to improve memory coalescing, i.e., it tries to assign data elements to threads as to produce coalesced accesses in SIMT groups. Furthermore, the IRU is capable of filtering and merging duplicated accesses, significantly reducing the workload. Programmers can easily utilize the IRU with a simple API, or let the compiler issue instructions from our extended ISA. We evaluate our proposal for state-of-the-art graph-based algorithms and a wide selection of applications. Results show that the IRU achieves a memory coalescing improvement of 1.32x and a 46% reduction in the overall traffic in the memory hierarchy, which results in 1.33x speedup and 13% energy savings on average, while incurring in a small 5.6% area overhead.

Funder

H2020 European Research Council

Agencia Estatal de Investigación

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. e-CLAS: Effective GPUDirect I/O Classification Scheme;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3