1. MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp 281–297. Oakland, CA, USA
2. Arthur D, Vassilvitskii S (2006) k-means++: The advantages of careful seeding. Technical report, Stanford
3. Ester M, Kriegel H-P, Sander J, Xu X, et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, pp 226–231
4. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496
5. Zhang T, Ramakrishnan R, Livny M (1996) Birch: an efficient data clustering method for very large databases. ACM SIGMOD Rec 25(2):103–114