Thresholding methods in non-intrusive load monitoring

Author:

Precioso Daniel,Gómez-Ullate David

Abstract

AbstractNon-intrusive load monitoring (NILM) is the problem of predicting the status or consumption of individual domestic appliances only from the knowledge of the aggregated power load. NILM is often formulated as a classification (ON/OFF) problem for each device. However, the training datasets gathered by smart meters do not contain these labels, but only the electric consumption at every time interval. This paper addresses a fundamental methodological problem in how a NILM problem is posed, namely how the different possible thresholding methods lead to different classification problems. Standard datasets and NILM deep learning models are used to illustrate how the choice of thresholding method affects the output results. Some criteria that should be considered for the choice of such methods are also proposed. Finally, we propose a slight modification to current deep learning models for multi-tasking, i.e. tackling the classification and regression problems simultaneously. Transfer learning between both problems might improve performance on each of them.

Funder

Ministerio de Ciencia e Innovacion

European Regional Development Fund

Consejeria de Economia, Innovacion, Ciencia y Empleo, Junta de Andalucia

Universidad de Cadiz

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Reference43 articles.

1. George William H (1992) Nonintrusive appliance load monitoring. In: Proceedings of the IEEE, 80(12):1870–1891, ISSN 15582256. https://doi.org/10.1109/5.192069

2. Christoforos N, Dimitris V (2019) Machine learning approaches for non-intrusive load monitoring: from qualitative to quantitative comparation. Artif Intell Rev 52(1):217–243. https://doi.org/10.1007/s10462-018-9613-7

3. Pedro Paulo Marques do N (2016) Applications of deep learning techniques on NILM. Universidade Federal do Rio de Janeiro, Diss

4. Christoph K and Peter G (2016) Non-intrusive load monitoring: A review and outlook. Lecture Notes in Informatics (LNI). In: Proceedings—Series of the Gesellschaft fur Informatik (GI), 259(1):2199–2210, ISSN 16175468

5. Kolter JZ, Matthew JJ (2011) REDD: a public data set for energy disaggregation research. In: Workshop on data mining applications in sustainability (SIGKDD), San Diego, CA, Citeseer, 59–62

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3