Parallel GEMM-based convolution for deep learning on multicore RISC-V processors
-
Published:2024-02-19
Issue:9
Volume:80
Page:12623-12643
-
ISSN:0920-8542
-
Container-title:The Journal of Supercomputing
-
language:en
-
Short-container-title:J Supercomput
Author:
Ramírez Cristian,Castelló Adrián,Martínez Héctor,Quintana-Ortí Enrique S.
Abstract
AbstractWe address the efficient implementation of the convolution operator on the GAP8 parallel ultra-low power platform (PULP), a heterogeneous multi-core processor equipped with a fabric controller (FC); a cluster of eight compute cores; and a four-level memory hierarchy with scratchpads instead of conventional, hardware-assisted cache memories. Our solution for this platform transforms the convolution into a general matrix–matrix multiplication (gemm) via the lowering approach, demonstrating that it is possible to attain reasonable performance on the GAP8 by carefully adapting techniques such as tiling and loop parallelism, which are mainstream in the multi-threaded, cache-aware realization of gemm.
Funder
Generalitat Valenciana Agencia Estatal de Investigación Junta de Andalucía European Commission Universitat Politècnica de València
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Hazelwood K, Bird S, Brooks D, Chintala S, Diril U, Dzhulgakov D, Fawzy M, Jia B, Jia Y, Kalro A, Law J, Lee K, Lu J, Noordhuis P, Smelyanskiy M, Xiong L, Wang X (2018) Applied machine learning at Facebook: A datacenter infrastructure perspective. In: IEEE Int. Symp. HPC Architecture, pp 620–629 2. Park J, Naumov M, Basu P, Deng S, Kalaiah A, Khudia D, Law J, Malani P, Malevich A, Nadathur S, Pino J, Schatz M, Sidorov A, Sivakumar V, Tulloch A, Wang X, Wu Y, Yuen H, Diril U, Dzhulgakov D, Hazelwood K, Jia B, Jia Y, Qiao L, Rao V, Rotem N, Yoo S, Smelyanskiy M (2018) Deep learning inference in Facebook data centers: characterization, performance optimizations and hardware implications. arXiv:1811.09886 3. Wu C, Brooks D, Chen K, Chen D, Choudhury S, Dukhan M, Hazelwood K, Isaac E, Jia Y, Jia B, Leyvand T, Lu H, Lu Y, Qiao L, Reagen B, Spisak J, Sun F, Tulloch A, Vajda P, Wang X, Wang Y, Wasti B, Wu Y, Xian R, Yoo S, Zhang P (2019) Machine learning at Facebook: Understanding inference at the edge. In: IEEE international symposium HPC architecture, pp 331–344 4. Garofalo A, Rusci M, Conti F, Rossi D, Benini L (2019) PULP-NN: a computing library for quantized neural network inference at the edge on RISC-V based parallel ultra low power clusters. In: 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp 33–36 5. Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for document processing. In: 10th international workshop on frontiers in handwriting recognition, Université de Rennes, France
|
|