Author:
Wang Xiaohong,Zhao Xu,Xu Kun,Xu Shihao
Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Information Systems,Theoretical Computer Science,Software
Reference89 articles.
1. Chiang WL, Liu X, Si S, Li Y, Bengio S, Hsieh CJ, (2019) Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks, In: Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., https://doi.org/10.1145/3292500.3330925.
2. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y, (2018) Graph attention networks, http://arxiv.org/abs/1710.10903 (accessed June 19, 2023).
3. Zhang Z, Cui P, Zhu W, (2020). Deep learning on graphs: a survey, http://arxiv.org/abs/1812.04202 (accessed June 19, 2023).
4. Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32:4–24. https://doi.org/10.1109/TNNLS.2020.2978386
5. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020) Graph neural networks: A review of methods and applications. AI Open 1:57–81. https://doi.org/10.1016/j.aiopen.2021.01.001
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献