Nanobiolubricant grinding: a comprehensive review

Author:

Song Yu-Xiang,Li Chang-HeORCID,Zhou Zong-Ming,Liu Bo,Sharma Shubham,Dambatta Yusuf Suleiman,Zhang Yan-Bin,Yang Min,Gao Teng,Liu Ming-Zheng,Cui Xin,Wang Xiao-Ming,Xu Wen-Hao,Li Run-Ze,Wang Da-Zhong

Abstract

AbstractMinimum quantity lubrication (MQL), which considers the cost, sustainability, flexibility, and quality, has been actively explored by scholars. Nanoadditive phases have been widely investigated as atomizing media for MQL, aimed at enhancing the heat transfer and friction reduction performance of vegetable-oil-based biolubricants. However, the industrial application of nano-enhanced biolubricants (NEBL) in grinding wheels and workpiece interfaces as a cooling and lubricating medium still faces serious challenges, which are attributed to the knowledge gap in the current mapping between the properties and grindability of NEBL. This paper presents a comprehensive literature review of research developments in NEBL grinding, highlighting the key challenges, and clarifies the application of blind spots. Firstly, the physicochemical properties of the NEBL are elaborated from the perspective of the base fluid and nanoadditive phase. Secondly, the excellent grinding performance of the NEBL is clarified by its distinctive film formation, heat transfer, and multiple-field mobilization capacity. Nanoparticles with high thermal conductivity and excellent extreme-pressure film-forming properties significantly improved the high-temperature and extreme-friction conditions in the grinding zone. Furthermore, the sustainability of applying small amounts of NEBL to grinding is systematically evaluated, providing valuable insights for the industry. Finally, perspectives are proposed to address the engineering and scientific bottlenecks of NEBL. This review aims to contribute to the understanding of the effective mechanisms of NEBL and the development of green grinding technologies.

Funder

National Natural Science Foundation of China

Shandong Natural Science Foundation

Qingdao Science and Technology Planning Park Cultivation Plan

China Postdoctral Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3