Failure mode analysis on compression of lattice structures with internal cooling channels produced by laser powder bed fusion

Author:

Virgillito E.ORCID,Aversa A.,Calignano F.,Lombardi M.,Manfredi D.,Ugues D.,Fino P.

Abstract

AbstractConformal cooling coils have been developed during the last decades through the use of additive manufacturing (AM) technologies. The main goal of this study was to analyze how the presence of an internal channel that could act as a conformal cooling coil could affect compressive strength and quasi-elastic gradient of AlSi10Mg lattice structures produced by laser powder bed fusion (LPBF). Three different configurations of samples were tested in compression at 25 °C and 200 °C. The reference structures were body centered cubic (BBC) in the core of the samples with vertical struts along Z (BCCZ) lattices in the outer perimeter, labelled as NC samples. The main novelty consisted in inserting a straight elliptical channel and a 45° elliptical channel inside the BCCZ lattice structures, labelled as SC and 45C samples respectively. All the samples were then tested in as-built (AB) condition, and after two post process heat treatments, commonly used for AlSi10Mg LPBF industrial components, a stress relieving (SR) and a T6 treatment. NC lattice structures AB exhibited an overall fragile fracture and therefore the SC and 45C configuration samples were tested only after thermal treatments. The test at 25 °C showed that all types of samples were characterized by negligible variations in their quasi-elastic gradients and yield strength. On the contrary, the general trend of stress-strain curves was influenced by the presence of the channel and its position. The test at 200 °C showed that NC, SC and 45C samples after SR and T6 treatments exhibited a metal-foam like deformation.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3