Lanthanide and yttrium substitution in natural fluorite

Author:

Horsburgh Nicola J.,Finch Adrian A.ORCID,Friis Henrik

Abstract

AbstractFluorite is one of the most common minerals in the crust and is of widespread economic importance. It shows strong UV-excited luminescence, variously attributed to defects within the fluorite structure and lanthanide substitutions. We present here a detailed chemical characterisation of a suite of natural fluorite samples, chosen to represent the range of compositions observed in nature. We perform X-ray excited luminescence spectroscopy on the samples as a function of temperature (20–673 K) in the wavelength range 250–800 nm to provide insights into physical defects in the lattice and their interactions with lanthanide substituents in natural fluorite. Most broad bands in the UV are attributed to electronic defects in the fluorite lattice, whereas sharp emissions are attributed to intra-ion energy cascades in trivalent lanthanides. Lanthanides are accommodated in fluorite by substitution for Ca2+coupled with interstitial F, O2−(substituting for F) and a variety of electronic defect structures which provide local charge balance. The chondrite-normalised lanthanide profiles show that fluorite accommodates a greater proportion of heavy lanthanides (and Y) as the total Rare Earth Element (REE) concentration increases; whereas cell parameters decrease and then increase as substitution continues. Luminescence intensity also goes through a maximum and then decreases as a function of REE concentration. All three datasets are consistent with a model whereby lanthanides initially act as isolated centres, but, beyond a critical threshold (~ 1000 ppm), cluster into lanthanide-rich domains. Clustering results in shorter REE-O bond distances (favouring smaller heavier ions), a larger unit cell but more efficient energy transfer between lanthanides, thereby promoting non-radiative energy loss and a drop in the intensity of lanthanide emission.

Funder

Natural Environment Research Council

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3