Crackling noise and avalanches in minerals

Author:

Salje Ekhard K. H.ORCID,Jiang Xiang

Abstract

AbstractThe non-smooth, jerky movements of microstructures under external forcing in minerals are explained by avalanche theory in this review. External stress or internal deformations by impurities and electric fields modify microstructures by typical pattern formations. Very common are the collapse of holes, the movement of twin boundaries and the crushing of biominerals. These three cases are used to demonstrate that they follow very similar time dependences, as predicted by avalanche theories. The experimental observation method described in this review is the acoustic emission spectroscopy (AE) although other methods are referenced. The overarching properties in these studies is that the probability to observe an avalanche jerk J is a power law distributed P(J) ~ J−ε where ε is the energy exponent (in simple mean field theory: ε = 1.33 or ε = 1.66). This power law implies that the dynamic pattern formation covers a large range (several decades) of energies, lengths and times. Other scaling properties are briefly discussed. The generated patterns have high fractal dimensions and display great complexity.

Funder

Engineering and Physical Sciences Research Council

Natural Science Foundation of China

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic emission data based modelling of fracture of glassy polymer;Engineering Fracture Mechanics;2024-06

2. Avalanches and Fractures in Biotreated Calcareous Sands;International Journal of Geomechanics;2024-05

3. Wild avalanches and mild fluctuations during filiform corrosion of Mg in NaCl solution;Physical Review Research;2023-09-27

4. Crackling noise microscopy;Nature Communications;2023-08-16

5. Damage evolution of rock salt under multilevel amplitude creep–fatigue loading with acoustic emission monitoring;International Journal of Rock Mechanics and Mining Sciences;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3