Thermodynamics of schafarzikite (FeSb2O$$_4$$) and tripuhyite (FeSbO$$_4$$)

Author:

Majzlan Juraj,Tuhý Marek,Dachs Edgar,Benisek Artur

Abstract

AbstractIn this work, we investigated the thermodynamic properties of synthetic schafarzikite (FeSb2O$$_4$$ 4 ) and tripuhyite (FeSbO$$_4$$ 4 ). Low-temperature heat capacity ($$C_p$$ C p ) was determined by relaxation calorimetry. From these data, third-law entropy was calculated as $$110.7\pm 1.3$$ 110.7 ± 1.3 J mol$$^{-1}$$ - 1 K$$^{-1}$$ - 1 for tripuhyite and $$187.1\pm 2.2$$ 187.1 ± 2.2 J mol$$^{-1}$$ - 1 K$$^{-1}$$ - 1 for schafarzikite. Using previously published $$\Delta _fG^o$$ Δ f G o values for both phases, we calculated their $$\Delta _fH^o$$ Δ f H o as $$-947.8\pm 2.2$$ - 947.8 ± 2.2 for tripuhyite and $$-1061.2\pm 4.4$$ - 1061.2 ± 4.4 for schafarzikite. The accuracy of the data sets was tested by entropy estimates and calculation of $$\Delta _fH^o$$ Δ f H o from estimated lattice energies (via Kapustinskii equation). Measurements of $$C_p$$ C p above $$T = 300$$ T = 300 K were augmented by extrapolation to $$T = 700$$ T = 700 K with the frequencies of acoustic and optic modes, using the Kieffer $$C_p$$ C p model. A set of equilibrium constants ($$\log K$$ log K ) for tripuhyite, schafarzikite, and several related phases was calculated and presented in a format that can be employed in commonly used geochemical codes. Calculations suggest that tripuhyite has a stability field that extends over a wide range of pH-p$$\epsilon$$ ϵ conditions at $$T = 298.15$$ T = 298.15 K. Schafarzikite and hydrothermal oxides of antimony (valentinite, kermesite, and senarmontite) can form by oxidative dissolution and remobilization of pre-existing stibnite ores.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Schiller-Universität Jena

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Materials Science

Reference52 articles.

1. Accornero M, Marini L, Lelli M (2008) The dissociation constant of antimonic acid at 10–40 °C. J Solut Chem 37:785–800

2. Ahlfeld F (1948) An unusual antimony deposit in Argentina. Econ Geol 43:598–602

3. Akinfiev NN, Zotov AV, Shikina ND (1994) Experimental investigation and thermodynamic correlation in the Sb(III)-S(II)-O-H system. Geochem Int 31:27–40

4. Babčan J (1976) Enstehung und Stabilität von Antimonmineralen im System Sb3+-S2--H+-OH-. Chem Erde 35:281

5. Barnes HL (1979) Solubilities of ore minerals. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 404–460

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3