Compositional effects in the liquid Fe–Ni–C system at high pressure

Author:

Posner Esther S.,Steinle-Neumann Gerd

Abstract

AbstractWe performed molecular dynamics simulations based on density functional theory to systematically investigate the Fe–Ni–C system including (1) pure Fe and Ni; (2) binary Fe–Ni, Fe–C, and Ni–C; and (3) ternary Fe–Ni–C liquid compositions at 3000 K and three simulation volumes corresponding to pressure (P) up to 83 GPa. Liquid structural properties, including coordination numbers, are analyzed using partial radial distribution functions. Self-diffusion coefficients are determined based on the atomic trajectories and the asymptotic slope of the time-dependent mean-square displacement. The results indicate that the average interatomic distance between two Fe atoms (rFe–Fe) decreases with P and is sensitive to Ni (XNi) and C (XC) concentration, although the effects are opposite: rFe–Fe decreases with increasing XNi, but increases with increasing XC. Average rFe–C and rNi–C values also decrease with increasing XNi and generally remain constant between the two lowest P points, corresponding to a coordination change of carbon from ~ 6.8 to ~ 8.0, and then decrease with additional P once the coordination change is complete. Carbon clustering occurs in both binary (especially Ni–C) and ternary compositions with short-range rC-C values (~ 1.29 to ~ 1.57 Å), typical for rC-C in diamond and graphite. The self-diffusion results are generally consistent with high-P diffusion data extrapolated from experiments conducted at lower temperature (T). A subset of additional simulations was conducted at 1675 and 2350 K to estimate the effect of T on diffusion, yielding an activation enthalpy of ~ 53 kJ/mol and activation volume of ~ 0.5 cm3/mol.

Funder

Deutsche Forschungsgemeinschaft

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3