Abstract
AbstractIn this study, we present the first systematic dataset on natural variations of OH defect and trace element contents in quartz within igneous bodies. Samples were derived from bore holes of two plutonic bodies from the Krušné Hory/Erzgebirge (German–Czech border), representing typical A-type (Cínovec/Zinnwald granite cupola) and S-type (Podlesí Stock) granite intrusions. Fourier Transform Infrared spectroscopy of quartz was used to investigate the sample set with regard to its OH defect speciation and content. For Zinnwald quartz, IR absorption spectra reveal different lithologies due to changes of the OH defect inventory, enabling a subdivision of the granitic body: (1) hydrothermal greisen quartz of the uppermost part of the intrusion have low OH defect contents (average of 15 µg/g H2O); (2) zinnwaldite granite quartz vary strongly in defect content and show the highest content of the dataset (10–70 µg/g H2O); (3) quartz from an underlying biotite granite have slightly lower, but very uniform contents down to the bottom of the borehole at 1600 m (average 20 µg/g H2O). Infrared spectra of Podlesí quartz reveal a gradual increase in total defect water content with increasing depth over 350 m (30–55 µg/g H2O). Lithium contents in quartz samples from the uppermost part of the Zinnwald intrusion correlate with the occurrence of Li-specific OH defects, while cathodoluminescence (CL) images do not show specific differences. Our findings evidence the potential of OH defects in quartz as a tool to decipher differentiation trends in igneous bodies, and the application of their eroded material for provenance analyses.
Publisher
Springer Science and Business Media LLC
Subject
Geochemistry and Petrology,General Materials Science
Reference64 articles.
1. Ackerman L, Haluzová E, Creaser RA, Pašava J, Veselovský F, Breiter K, Erban V, Drábek M (2017) Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re–Os geochronology of molybdenite. Miner Depos 52:651–662
2. Ackerson MR, Tailby ND, Watson EB (2015) Trace elements in quartz shed light on sediment provenance. Geochem Geophys 16:1894–1904
3. Aines RD, Rossman GR (1984) Water in minerals? A peak in the infrared. J Geophys Res 89:4059–4071
4. Augustsson C, Reker A (2012) Cathodolumenescence spectra of quartz as provenance indicators revisited. J Sediment Res 82:559–570
5. Bambauer HU (1961) Spurenelementgehalte und γ-Farbzentren in Quarzen aus Zerrklüften der Schweizer Alpen. Schweiz Mineral Petrogr Mitt 41:335–369
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献