Stepwise dehydration of Cd-exchanged levyne: thermal stability and structural modifications

Author:

Cametti GeorgiaORCID

Abstract

AbstractZeolites show remarkable properties that can be tuned through cation exchange of their original extraframework content. In this respect, the response of the modified zeolite to the heating stimuli, in terms of structural modifications and thermal stability, can drastically change and is, therefore, an important factor to consider. In this study, the dehydration mechanism of a natural levyne previously exchanged with Cd2+ has been monitored in situ by single crystal X-ray diffraction. The initial dehydration trend between 50 and 175 °C is similar to that observed for the pristine material, levyne-Ca. The water loss is accompanied by extraframework cation migration within the zeolitic cavities and the unit-cell volume slightly contracts from 3503.8(1) to 3467.8(6) Å3. From 200 to 250 °C, a pronounced drop of the unit-cell volume (− 7%) is observed. The dehydrated structure at 250 °C corresponds to levyne B topology of natural levyne, characterized by the statistical rupture of the T–O–T bonds of the double six-ring membered cage. However, in contrast to levyne-Ca, the fraction of broken connections reached 50% instead of 37%, and no additional structural modifications were detected up to 350 °C. At 400 °C, diffraction data pointed to the onset of the structural collapse. At this temperature, the measured unit-cell volume was 8% smaller compared to that of the RT structure. The corresponding contracted structure did not rehydrate after exposure to humid conditions for 21 days.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Universität Bern

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3