On the crystal-chemistry of meyerhofferite, CaB3O3(OH)5·H2O

Author:

Gatta G. DiegoORCID,Guastella Giorgio,Capelli Silvia C.,Comboni DavideORCID,Guastoni Alessandro

Abstract

AbstractThe crystal structure and crystal chemistry of meyerhofferite, ideally CaB3O3(OH)5·H2O, was investigated by a multi-methodological approach based on titrimetric determination of boron, gravimetric determination of calcium, determination of fluorine by ion selective electrode, determination of water content by heating, other minor elements by inductively coupled plasma atomic emission spectroscopy, along with single-crystal synchrotron X-ray and neutron diffraction. The concentration of more than 50 chemical elements was measured. The combination of these techniques proves that the composition of meyerhofferite approaches the ideal one (i.e., (Ca1.012Mg0.003) (B2.984Si0.001)O3(OH)5·1.018H2O), with only a modest fraction of Mg (with MgO ≈ 0.03 wt%) replacing Ca, and with Si the only potential substituent of tetrahedral B (with SiO2 ≈ 0.02 wt%). The content of REE and other minor elements is, overall, not significant, including that of fluorine as a potential OH substituent (i.e., < 0.01 wt%). These findings have some relevant geochemical and technical implications, here discussed. The X-ray and neutron structure model obtained in this study prove that the building units of the structure of meyerhofferite consist of: two BO2(OH)2 tetrahedra and one BO2(OH) triangle, linked by corner-sharing to form [B3O3(OH)5]2− rings, and distorted Ca-polyhedra (with CN = 8, CaO3(OH)4(OH2)), linked by edge-sharing to form infinite chains along [001]. The B3O3(OH)5 rings are connected to the Ca-polyhedra chains by corner- and edge-sharing, on two sides of the chains. These heteropolyhedral chains, made by Ca-polyhedra and B3O3(OH)5 rings, are mutually connected through hydrogen bonding only, giving rise to the tri-dimensional edifice of meyerhofferite. The neutron structure refinement showed no evidence of static or dynamic disorder pertaining to the H sites; their libration regime was found to be significantly anisotropic. At least seven of the nine oxygen sites of the structure are involved in H-bonding, as donors or as acceptors. The role played by the H-bonding scheme on the physical properties of meyerhofferite is discussed.

Funder

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3