Abstract
AbstractOver a third of the world’s crops require insect pollination, and reliance on pollination services for food continues to rise as human populations increase. Furthermore, as interest in urban agriculture has grown, so has a need for studies of urban pollinator ecology and pollination. Analyzing pollinator assemblages along a rural-urban gradient provides powerful mechanistic insight into how urbanization impacts pollinators. Yet, studies examining pollinators along urban-rural gradients are limited and results vary. Since pollinators vary tremendously in life history characteristics and respond to urbanization differently, studies from different regions would improve our understanding of pollinator response to urbanization. This study documents different bee assemblages along a high-plains semi-arid urban-rural gradient in Denver, Colorado, USA. Percent impervious surface was used to define the extent of urbanization at 12 sites and local and landscape characteristics were estimated using field assessments and geospatial analysis. Wild bees were collected and the relationships between urbanization and bee communities were explored using linear modeling. Overall, bee abundance and diversity decreased with increasing urbanization, suggesting that urban areas negatively impact bee communities. However, all bee guilds responded positively to local floral richness and negatively to the degree of landscape urbanization, suggesting that different types of bees responded similarly to urbanization. These findings suggest that providing a greater diversity of floral resources is key to mitigating the negative impacts of urbanization on pollinator communities.
Funder
Garden Club of America Centennial Pollinator Fellowship
University of Colorado Denver
American Association of Geographers Biogeography Specialty Group
Publisher
Springer Science and Business Media LLC
Reference109 articles.
1. Ahrne K, Bengtsson J, Elmqvist T, Iantbruksuniversitet S (2009) Bumble bees (Bombus spp) along a gradient of increasing urbanization. PLoS One 4:e5574. https://doi.org/10.1371/journal.pone.0005574
2. Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918. https://doi.org/10.1016/j.cub.2009.03.071
3. Ascher JS, Pickering J (2012) Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_species. Accessed 14 July 2018
4. Banaszak-Cibicka W, Żmihorski M (2012) Wild bees along an urban gradient: winners and losers. J Insect Conserv 16:331–343. https://doi.org/10.1007/s10841-011-9419-2
5. Bates AJ, Sadler JP, Fairbrass AJ, Falk SJ, Hale JD, Matthews TJ (2011) Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS One 6:e23459. https://doi.org/10.1371/journal.pone.0023459
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献