Abstract
AbstractUrban expansion has emerged as a pervasive driver of biodiversity loss in Mexican cities due to shifts in landscape composition and configuration. Hence, the preservation of forest cover, green spaces and isolated trees assume a critical role in conserving the biodiversity within urban areas. We compared mammal assemblages across 520 sites in Mexico City examining the impact of local vegetation and site characteristics (e.g., patch size, isolation distance) on diversity patterns. Then, we used a generalized linear model to evaluate the relationship between mammal assemblages (including both alpha and beta diversities) and the level of structural and functional connectivity across the landscape. We collected 5,063 records of 38 species from the sampled sites. Mammalian richness ranged from 1 to 9 spp./site, and the mean of taxonomic and functional (Functional Distance [MFD]) alpha diversities were 1.9 ± 1.3 spp./site and 0.41 ± 0.60 MFD/site, respectively. The average size of habitat fragments was 0.41 hectares, and the percent forest cover per site ranged from 0.5 to 100%. Both species and functional alpha diversities were different among the land-use and vegetation types (including protected vs. non-protected areas). There was a clear distinction (β value > 0.40) in species composition across the landscape, which was positively related to geographical distance and negatively related to connectivity between sites. We identified four main patches especially important to connectivity across the city and argue that conserving them is critical for restoring key components of biodiversity and ecosystem services in urban and peri-urban areas of Mexico City.
Funder
Consejo Nacional de Humanidades, Ciencias y Tecnologías
IdeaWild
Programa de Investigación en Cambio Climático
Publisher
Springer Science and Business Media LLC