Abstract
Abstract
Holographic complexity in the “complexity equals action” approach is reconsidered relaxing the requirement of reparameterization invariance of the action with the prescription that the action vanish in any static, vacuum causal diamond. This implies that vacuum anti-de Sitter space plays the role of the reference state. Moreover, the complexity of an anti-de Sitter-Schwarzschild black hole becomes intrinsically finite and saturates Lloyd’s bound after a critical time. It is also argued that several artifacts, such as the unphysical negative-time interval, can be removed by truly considering the bulk dual of the thermofield double state.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference59 articles.
1. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].
2. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].
3. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
4. L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 24 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].
5. L. Susskind, Three Lectures on Complexity and Black Holes, SpringerBriefs in Physics, Springer, (2018) [DOI] [arXiv:1810.11563] [INSPIRE].
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献