Measuring inflaton couplings via primordial gravitational waves

Author:

Barman BasabenduORCID,Ghoshal Anish,Grzadkowski Bohdan,Socha Anna

Abstract

Abstract We investigate the reach of future gravitational wave (GW) detectors in probing inflaton couplings with visible sector particles that can either be bosonic or fermionic in nature. Assuming reheating takes place through perturbative quantum production from vacuum in presence of classical inflaton background field, we find that the spectral energy density of the primordial GW generated during inflation becomes sensitive to inflaton-matter coupling. We conclude, obeying bounds from Big Bang Nucleosysthesis and Cosmic Microwave Background, that, e.g., inflaton-scalar couplings of the order of ~ 𝒪(1020) GeV fall within the sensitivity range of several proposed GW detector facilities. However, this prediction is sensitive to the size of the inflationary scale, nature of the inflaton-matter interaction and shape of the potential during reheating. Having found the time-dependent effective inflaton decay width, we also discuss its implications for dark matter (DM) production from the thermal plasma via UV freeze-in during reheating. It is shown, that one can reproduce the observed DM abundance for its mass up to several PeVs, depending on the dimension of the operator connecting DM with the thermal bath and the associated scale of the UV physics. Thus we promote primordial GW to observables sensitive to feebly coupled inflaton, which is very challenging if not impossible to test in conventional particle physics laboratories or astrophysical measurements.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3