Abstract
Abstract
We study classical radiation fields at next-to-leading order using the methods of scattering amplitudes. The fields of interest to us are sourced when two massive, point-like objects scatter inelastically, and can be computed from one-loop amplitudes. The real and imaginary parts of the amplitudes play important but physically distinct roles in the radiation field. We argue that the imaginary part captures the effects of radiation reaction. This aspect of radiation reaction is directly linked to cuts of one-loop amplitudes which expose Compton trees. We also discuss the fascinating interplay between renormalisation, radiation reaction and classical field theory from this perspective.
Publisher
Springer Science and Business Media LLC
Reference166 articles.
1. A. Antonelli et al., Energetics of two-body Hamiltonians in post-Minkowskian gravity, Phys. Rev. D 99 (2019) 104004 [arXiv:1901.07102] [INSPIRE].
2. V. Kalogera et al., The Next Generation Global Gravitational Wave Observatory: The Science Book, arXiv:2111.06990 [INSPIRE].
3. M. Khalil, A. Buonanno, J. Steinhoff and J. Vines, Energetics and scattering of gravitational two-body systems at fourth post-Minkowskian order, Phys. Rev. D 106 (2022) 024042 [arXiv:2204.05047] [INSPIRE].
4. A. Buonanno et al., Snowmass White Paper: Gravitational Waves and Scattering Amplitudes, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17–26 (2022) [arXiv:2204.05194] [INSPIRE].
5. H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献