Abstract
Abstract
We investigate how entanglement entropy behaves in a non-conformal scalar field system with a quantum phase transition, by the replica method. We study the σ-model in 3+1 dimensions which is O(N) symmetric as the mass squared parameter μ2 is positive, and undergoes spontaneous symmetry breaking while μ2 becomes negative. The area law leading divergence of the entanglement entropy is preserved in both of the symmetric and the broken phases. The spontaneous symmetry breaking changes the subleading divergence from log to log squared, due to the cubic interaction on the cone. At the leading order of the coupling constant expansion, the entanglement entropy reaches a cusped maximum at the quantum phase transition point μ2 = 0, and decreases while μ2 is tuned away from 0 into either phase.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The large N limit of icMERA and holography;Journal of High Energy Physics;2022-04-05