Spacetime topology from holographic entanglement

Author:

Cantcheff Marcelo Botta

Abstract

Abstract An asymptotically AdS geometry connecting two or more boundaries is given by a entangled state, that can be expanded in the product basis of the Hilbert spaces of each CFT living on the boundaries. We derive a prescription to compute this expansion for states describing spacetimes with general spatial topology in arbitrary dimension. To large N, the expansion coincides with the Schmidt decomposition and the coefficients are given by n-point correlation functions on a particular Euclidean geometry.We show that this applies to all spacetime that admits a Hartle-Hawking type of wave functional, which via a standard hypothesis on the spatial topology, can be (one to one) mapped to CFT states defined on the asymptotic boundary. It is also observed that these states are endowed with quantum coherence properties.Applying this as holographic engineering, one can to construct an emergent space geometry with certain predetermined topology by preparing an entangled state of the dual quantum system. As an example, we apply the method to calculate the expansion and characterize a spacetime whose initial spatial topology is a (genus one) handlebody.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3