Space-filling branes & gaugings

Author:

Dibitetto Giuseppe,Riccioni Fabio,Risoli Stefano

Abstract

Abstract We consider in any dimension the supersymmetric ℤ2 truncations of the maximal supergravity theories. In each dimension and for each truncation we determine all the sets of 1/2-BPS space-filling branes, i.e. branes whose world-volume invades the whole of space-time, that preserve the supersymmetry of the truncated theory and the representations of the symmetry of such theory to which they belong. We show that in any dimension below eight these sets always contain exotic branes, that are objects that do not have a ten-dimensional origin. We repeat the same analysis for half-maximal theories and for the quarter-maximal theories in four and three dimensions. We then discuss all the possible gaugings of these theories as described in terms of the embedding tensor. In general, the truncation acts on the quadratic constraints of the embedding tensor in such a way that some representations survive the truncation although they are not required by the supersymmetry of the truncated theory. We show that for any theory, among these representations, the highest-dimensional ones are precisely those of the 1/2-BPS space-filling branes that preserve the same supersymmetry of the truncated theory, and we interpret this result as the fact that these quadratic constraints after the truncation become tadpole conditions for such branes.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 6D (1,1) gauged supergravities from orientifold compactifications;Journal of High Energy Physics;2020-05

2. Exotic branes and mixed-symmetry potentials. I. Predictions from E11 symmetry;Progress of Theoretical and Experimental Physics;2020-05-01

3. Weaving the exotic web;Journal of High Energy Physics;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3