Abstract
Abstract
We present the computation of the eight-particle three-loop amplitude beyond leading logarithmic accuracy in the multi-Regge limit of planar
$$ \mathcal{N} $$
N
= 4 Super Yang-Mills theory. Starting from the all-loop dispersion integral form of the amplitude, we consider the eight-particle case and by analyzing said dispersion integral we associate it to a well-defined Fourier-Mellin transform. By using the properties of the Fourier-Mellin representation and its convolution product structure, we compute the three-loop eight-particle MHV amplitude at next-to-leading logarithmic accuracy. From this MHV result, we obtain the three-loop eight particle amplitude in multi-Regge kinematics for all helicity configurations, including next-to-next-to-MHV. Finally, we find that the result is described by combinations of single-valued multiple polylogarithms of uniform weight, the leading singularity structure of which corresponds to the classification shown at leading logarithmic accuracy.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference43 articles.
1. J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE].
2. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev.D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].
3. Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev.D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
4. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE].
5. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys.B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献