Jet classification using high-level features from anatomy of top jets

Author:

Furuichi AmonORCID,Lim Sung HakORCID,Nojiri Mihoko M.ORCID

Abstract

Abstract Recent advancements in deep learning models have significantly enhanced jet classification performance by analyzing low-level features (LLFs). However, this approach often leads to less interpretable models, emphasizing the need to understand the decision-making process and to identify the high-level features (HLFs) crucial for explaining jet classification. To address this, we consider the top jet tagging problems and introduce an analysis model (AM) that analyzes selected HLFs designed to capture important features of top jets. Our AM mainly consists of the following three modules: a relation network analyzing two-point energy correlations, mathematical morphology and Minkowski functionals for generalizing jet constituent multiplicities, and a recursive neural network analyzing subjet constituent multiplicity to enhance sensitivity to subjet color charges. We demonstrate that our AM achieves performance comparable to the Particle Transformer (ParT) while requiring fewer computational resources in a comparison of top jet tagging using jets simulated at the hadronic calorimeter angular resolution scale. Furthermore, as a more constrained architecture than ParT, the AM exhibits smaller training uncertainties because of the bias-variance tradeoff. We also compare the information content of AM and ParT by decorrelating the features already learned by AM. Lastly, we briefly comment on the results of AM with finer angular resolution inputs.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3