Abstract
Abstract
We show that starting from initial conditions with stable perturbations, evolution of a galileon scalar field results in the appearance of a ghost later on. To demonstrate this, we consider a theory with k-essence and cubic galileon Lagrangians on a fixed Minkowski background. Explicit analytical solutions of simple waves are constructed, on top of which a healthy scalar degree of freedom is shown to be converted onto a ghost. Such a transformation is smooth and moreover perturbations remain hyperbolic all the time (until a caustic forms). We discuss a relation between the ghost and the appearance of closed causal curves for such solutions.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference24 articles.
1. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].
2. C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev. D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].
3. T. Kobayashi, M. Yamaguchi and J. Yokoyama, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys. 126 (2011) 511 [arXiv:1105.5723] [INSPIRE].
4. M. Ostrogradski, Mémoire sur les équations différentielles relatives au probléme des isopérimétres, Mem. Ac. St. Petersbourg 4 (1850) 385.
5. C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [INSPIRE].
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献