Abstract
Abstract
The quest for a quantum gravity phenomenology has inspired a quantum notion of space-time, which motivates us to study the fate of the relativistic symmetries of a particular model of quantum space-time, as well as its intimate connection with the plausible emergent curved “physical momentum space”. We here focus on the problem of Poincare symmetry of κ-Minkowski type non-commutative (quantum) space-time, where the Poincare algebra, on its own, remains undeformed, but in order to preserve the structure of the space-time non-commutative (NC) algebra, the actions of the algebra generators on the operator-valued space-time manifold must be enveloping algebra valued that lives in entire phase space i.e. the cotangent bundle on the space-time manifold (at classical level). Further, we constructed a model for a spin-less relativistic massive particle enjoying the deformed Poincare symmetry, using the first order form of geometric Lagrangian, that satisfies a new deformed dispersion relation and explored a feasible regime of a future Quantum Gravity theory in which the momentum space becomes curved. In this scenario there is only a mass scale (Planck mass mp), but no length scale. Finally, we relate the deformed mass shell to the geodesic distance in this curved momentum space, where the mass of the particle gets renormalized as a result of noncommutativity. We show, that under some circumstances, the Planck mass provides an upper bound for the observed renormalized mass.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference54 articles.
1. LIGO Scientific and Virgo collaborations, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
2. R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965) 57 [INSPIRE].
3. S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge, U.K. (1973) [https://doi.org/10.1017/cbo9780511524646].
4. S. Doplicher, K. Fredenhagen and J.E. Roberts, Space-time quantization induced by classical gravity, Phys. Lett. B 331 (1994) 39 [INSPIRE].
5. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献