Author:
Anastasiou Charalampos,Sterman George
Abstract
Abstract
Feynman amplitudes at higher orders in perturbation theory generically have complex singular structures. Notwithstanding the emergence of many powerful new methods, the presence of infrared divergences poses significant challenges for their evaluation. In this article, we develop a systematic method for the removal of the infrared singularities, by adding appropriate counterterms that approximate and cancel divergent limits point-by-point at the level of the integrand. We provide a proof of concept for our method by applying it to master-integrals that are found in scattering amplitudes for representative 2→2 scattering processes of massless particles. We demonstrate that, after the introduction of counterterms, the remainder is finite in four dimensions. In addition, we find in these cases that the complete singular dependence of the integrals can be obtained simply by analytically integrating the counterterms. Finally, we observe that our subtraction method can be also useful in order to extract in a simple way the asymptotic behavior of Feynman amplitudes in the limit of small mass parameters.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献