Abstract
Abstract
A gauge-invariant framework for computing bubble nucleation rates at finite temperature in the presence of radiative barriers was presented and advocated for model-building and phenomenological studies in an accompanying article [1]. Here, we detail this computation using the Abelian Higgs Model as an illustrative example. Subsequently, we recast this approach in the dimensionally-reduced high-temperature effective field theory for nucleation. This allows for including several higher order thermal resummations and furthermore delineate clearly the approach’s limits of validity. This approach provides for robust perturbative treatments of bubble nucleation during possible first-order cosmic phase transitions, with implications for electroweak baryogenesis and production of a stochastic gravitational wave background. Furthermore, it yields a sound comparison between results of perturbative and non-perturbative computations.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference144 articles.
1. J. Löfgren, M.J. Ramsey-Musolf, P. Schicho and T.V.I. Tenkanen, Nucleation at finite temperature: a gauge-invariant, perturbative framework, arXiv:2112.05472 [INSPIRE].
2. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].
3. M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE].
4. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].
5. G.A. White, A Pedagogical Introduction to Electroweak Baryogenesis, Morgan & Claypool Publishers, San Rafael, U.S.A. (2016) [INSPIRE].
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献