Abstract
Abstract
The two-loop interaction correction coefficient to the universal ac conductivity of disorder-free intrinsic graphene is computed with the help of a field theoretic renormalization study using the Bogoliubov-Parasiuk-Hepp-Zimmermann prescription. Non-standard Ward identities imply that divergent subgraphs (related to Fermi velocity renormalization) contribute to the renormalized optical conductivity. Proceeding either via densitydensity or via current-current correlation functions, a single well-defined value is obtained:
$$ \mathcal{C}=\left.\left(19-6\pi \right)/12\right)=0.01 $$
C
=
19
−
6
π
/
12
=
0.01
in agreement with the result first obtained by Mishchenko and which is compatible with experimental uncertainties.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献