Role of thermal field in entanglement harvesting between two accelerated Unruh-DeWitt detectors

Author:

Barman Dipankar,Barman SubhajitORCID,Majhi Bibhas Ranjan

Abstract

Abstract We investigate the effects of field temperature T(f) on the entanglement harvesting between two uniformly accelerated detectors. For their parallel motion, the thermal nature of fields does not produce any entanglement, and therefore, the outcome is the same as the non-thermal situation. On the contrary, T(f) affects entanglement harvesting when the detectors are in anti-parallel motion, i.e., when detectors A and B are in the right and left Rindler wedges, respectively. While for T(f) = 0 entanglement harvesting is possible for all values of A’s acceleration aA, in the presence of temperature, it is possible only within a narrow range of aA. In (1 + 1) dimensions, the range starts from specific values and extends to infinity, and as we increase T(f), the minimum required value of aA for entanglement harvesting increases. Moreover, above a critical value aA = ac harvesting increases as we increase T(f), which is just opposite to the accelerations below it. There are several critical values in (1 + 3) dimensions when they are in different accelerations. Contrary to the single range in (1 + 1) dimensions, here harvesting is possible within several discrete ranges of aA. Interestingly, for equal accelerations, one has a single critical point, with nature quite similar to (1 + 1) dimensional results. We also discuss the dependence of mutual information among these detectors on aA and T(f).

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3