Abstract
Abstract
A predictive Leptogenesis scenario is presented based on the Minimal Lepton Flavour Violation symmetry. In the realisation with three right-handed neutrinos transforming under the same flavour symmetry of the lepton electroweak doublets, lepton masses and PMNS mixing parameters can be described according to the current data, including a large Dirac CP phase. The observed matter-antimatter asymmetry of the Universe can be achieved through Leptogenesis, with the CP asymmetry parameter ε described in terms of only lepton masses, mixings and phases, plus two real parameters of the low-energy effective description. This is in contrast with the large majority of models present in the literature, where ε depends on several high-energy parameters, preventing a direct connection between low-energy observables and the baryon to photon ratio today. Recovering the correct amount of baryon asymmetry in the Universe constrains the Majorana phases of the PMNS matrix within specific ranges of values: clear predictions for the neutrinoless double beta decay emerge, representing a potential smoking gun for this framework.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference197 articles.
1. R.V. Wagoner, Big bang nucleosynthesis revisited, Astrophys. J. 179 (1973) 343 [INSPIRE].
2. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
3. A.D. Sakharov, Violation of CP Invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].
4. C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].
5. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献