Abstract
Abstract
We present results for SCET and bHQET matching coefficients and jet functions in the large-β0 limit. Our computations exactly predict all terms of the form $$ {\alpha}_s^{n+1}{n}_f^n $$
α
s
n
+
1
n
f
n
for any n ≥ 0, and we find full agreement with the coefficients computed in the full theory up to $$ \mathcal{O}\left({\alpha}_s^4\right) $$
O
α
s
4
. We obtain all-order closed expressions for the cusp and non-cusp anomalous dimensions (which turn out to be unambiguous) as well as matrix elements (with ambiguities) in this limit, which can be easily expanded to arbitrarily high powers of αs using recursive algorithms to obtain the corresponding fixed-order coefficients. Examining the poles laying on the positive real axis of the Borel-transform variable u we quantify the perturbative convergence of a series and estimate the size of non-perturbative corrections. We find a so far unknown u = 1/2 renormalon in the bHQET hard factor Hm that affects the normalization of the peak differential cross section for boosted top quark pair production. For ambiguous series the so-called Borel sum is defined with the principal value prescription. Furthermore, one can assign an ambiguity based on the arbitrariness of avoiding the poles by contour deformation into the positive or negative imaginary half-plane. Finally, we compute the relation between the pole mass and four low-scale short distance masses in the large-β0 approximation (MSR, RS and two versions of the jet mass), work out their μ- and R-evolution in this limit, and study how their implementation improves the convergence of the position-space bHQET jet function, whose three-loop coefficient in full QCD is numerically estimated.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference91 articles.
1. M. Cacciari, Jet physics theory, in proceedings of the 8th International Conference on Hard and Electromagnetic Probes of High-energy Nuclear Collisions (Hard Probes 2016), Wuhan, China, 22–27 September 2016.
2. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → Xsγ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
3. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
4. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
5. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献