Abstract
Abstract
The topology-changing transition between black strings and black holes localized in a Kaluza-Klein circle is investigated in an expansion in the inverse of the number of dimensions D. Performing a new kind of large-D scaling reduces the problem to a Ricci flow of the near-horizon geometry as it varies along the circle direction. The flows of interest here simplify to a non-linear logarithmic diffusion equation, with solutions known in the literature which are interpreted as the smoothed conifold geometries involved in the transition, namely, split and fused cones, which connect to black holes and non-uniform black strings away from the conical region. Our study demonstrates the adaptability of the 1/D expansion to deal with all the regimes and aspects of the static black hole/black string system, and provides another instance of the manner in which the large D limit reduces the task of solving Einstein’s equations to a simpler but compelling mathematical problem.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献