The in-out formalism for in-in correlators

Author:

Donath YanivORCID,Pajer EnricoORCID

Abstract

Abstract Cosmological correlators, the natural observables of the primordial universe, have been extensively studied in the past two decades using the in-in formalism pioneered by Schwinger and Keldysh for the study of dissipative open systems. Ironically, most applications in cosmology have focused on non-dissipative closed systems. We show that, for non-dissipative systems, correlators can be equivalently computed using the in-out formalism with the familiar Feynman rules. In particular, the myriad of in-in propagators is reduced to a single (Feynman) time-ordered propagator and no sum over the labelling of vertices is required. In de Sitter spacetime, this requires extending the expanding Poincaré patch with a contracting patch, which prepares the bra from the future. Our results are valid for fields of any mass and spin but assuming the absence of infrared divergences.We present three applications of the in-out formalism: a representation of correlators in terms of a sum over residues of Feynman propagators in the energy-momentum domain; an algebraic recursion relation that computes Minkowski correlators in terms of lower order ones; and the derivation of cutting rules from Veltman’s largest time equation, which we explicitly develop and exemplify for two-vertex diagrams to all loop orders.The in-out formalism leads to a natural definition of a de Sitter scattering matrix, which we discuss in simple examples. Remarkably, we show that our scattering matrix satisfies the standard optical theorem and the positivity that follows from it in the forward limit.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Searching for cosmological collider in the Planck CMB data;Journal of Cosmology and Astroparticle Physics;2024-09-01

2. A de Sitter S-matrix from amputated cosmological correlators;Journal of High Energy Physics;2024-08-27

3. In-in formalism for the entropy of quantum fields in curved spacetimes;Journal of Cosmology and Astroparticle Physics;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3