Ensemble averaging in JT gravity from entanglement in Matrix Quantum Mechanics

Author:

Di Ubaldo Gabriele,Policastro Giuseppe

Abstract

Abstract We consider the generalization of a matrix integral with arbitrary spectral curve ρ0(E) to a 0+1D theory of matrix quantum mechanics (MQM). Using recent techniques for 1D quantum systems at large-N, we formulate a hydrodynamical effective theory for the eigenvalues. The result is a simple 2D free boson BCFT on a curved background, describing the quantum fluctuations of the eigenvalues around ρ0(E), which is now the large-N limit of the quantum expectation value of the eigenvalue density operator $$ \hat{\rho}(E) $$ ρ ̂ E .The average over the ensemble of random matrices becomes a quantum expectation value. Equal-time density correlations reproduce the results (including non-perturbative corrections) of random matrix theory. This suggests an interpretation of JT gravity as dual to a one-time-point reduction of MQM.As an application, we compute the Rényi entropy associated to a bipartition of the eigenvalues. We match a previous result by Hartnoll and Mazenc for the c = 1 matrix model dual to two-dimensional string theory and extend it to arbitrary ρ0(E). The hydrodynamical theory provides a clear picture of the emergence of spacetime in two dimensional string theory. The entropy is naturally finite and displays a large amount of short range entanglement, proportional to the microcanonical entropy. We also compute the reduced density matrix for a subset of n < N eigenvalues.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference122 articles.

1. G. Livan, M. Novaes and P. Vivo, Introduction to Random Matrices - Theory and Practice, vol. 26, Springer (2018). arXiv:1712.07903 [https://doi.org/10.48550/arXiv.1712.07903].

2. D. Anninos and B. Mühlmann, Notes on matrix models (matrix musings), J. Stat. Mech. 2008 (2020) 083109 [arXiv:2004.01171] [INSPIRE].

3. B. Eynard, T. Kimura and S. Ribault, Random matrices, arXiv:1510.04430 [INSPIRE].

4. G. Akemann, J. Baik and P. Di Francesco, The Oxford Handbook of Random Matrix Theory, Oxford University Press (2011) [INSPIRE].

5. M. Mehta, Random Matrices, Elsevier Science (2004).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3