Quantum computation in fermionic thermal field theories

Author:

Qian WenyangORCID,Wu BinORCID

Abstract

Abstract Thermal properties of quantum fields at finite temperature are crucial to understanding strongly interacting matter and recent development in quantum computing has provided an alternative and promising avenue of study. In this work, we study thermal field theories involving only fermions using quantum algorithms. We first delve into the presentations of fermion fields via qubits on digital quantum computers alongside the quantum algorithms such as quantum imaginary time evolutions employed to evaluate thermal properties of generic quantum field theories. Specifically, we show numerical results such as the thermal distribution and the energy density of thermal field theories for Majorana fermions in 1+1 dimensions using quantum simulators. In addition to free field theory, we also study the effects of interactions resulting from coupling with a spatially homogeneous Majorana field. In both cases, we show analytically that thermal properties of the system can be described using phase-space distributions, and the quantum simulation results agree with analytical and semiclassical expectations. Our work is an important step to understand thermal fixed points, preparing for quantum simulation of thermalization in real time.

Publisher

Springer Science and Business Media LLC

Reference68 articles.

1. S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Computation of Scattering in Scalar Quantum Field Theories, Quant. Inf. Comput. 14 (2014) 1014 [arXiv:1112.4833] [INSPIRE].

2. S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Quantum Field Theories, Science 336 (2012) 1130 [arXiv:1111.3633] [INSPIRE].

3. S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Fermionic Quantum Field Theories, arXiv:1404.7115 [INSPIRE].

4. N. Klco and M.J. Savage, Digitization of scalar fields for quantum computing, Phys. Rev. A 99 (2019) 052335 [arXiv:1808.10378] [INSPIRE].

5. D.E. Kharzeev and Y. Kikuchi, Real-time chiral dynamics from a digital quantum simulation, Phys. Rev. Res. 2 (2020) 023342 [arXiv:2001.00698] [INSPIRE].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3