Abstract
Abstract
It was demonstrated that a string probe falling radially within a superstratum geometry would experience tidal forces. These tidal forces were shown to excite the string by converting its kinetic energy into stringy excitations. Using the AdS/CFT correspondence we seek to understand this behavior from the perspective of the dual D1D5 CFT. To study this process we turn on an interaction of the theory which is described by a deformation operator. We start with an initial state which is dual to a graviton probe moving within the superstratum geometry. We then use two deformation operators to compute transition amplitudes between this state and a final state that corresponds to stringy excitations. We show that this amplitude grows as t2 with t being the amount of time for which the deformation operators are turned on. We argue that this process in the CFT is suggestive of the tidal effects experienced by the probe propagating within the dual superstratum geometry.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference78 articles.
1. O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].
2. S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].
3. I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [INSPIRE].
4. I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].
5. B.D. Chowdhury and A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 system, in the proceedings of the 5th Modave summer school in mathematical physics, (2010) [arXiv:1001.1444] [INSPIRE].
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献