Complex S3-symmetric 3HDM

Author:

Kunčinas A.ORCID,Ogreid O. M.,Osland P.,Rebelo M. N.

Abstract

Abstract CP violation plays a very important role in nature with implications both for Particle Physics and for Cosmology. Accounting for the observed matter-antimatter asymmetry of the Universe requires the existence of new sources of CP violation beyond the Standard Model. In models with an extended scalar sector CP violation can emerge either explicitly, i.e., at the Lagrangian level, or spontaneously. Spontaneous CP violation occurs in the framework of the electroweak symmetry breaking whenever the Lagrangian conserves CP and the vacuum breaks it. This requires that not all vacuum expectation values be real. In the context of multi-Higgs extensions of the Standard Model imposing the existence of a scalar basis where all couplings are real is a sufficient condition for CP to be explicitly conserved. We discuss a three-Higgs-doublet model with an underlying S3 symmetry, allowing in principle for complex couplings. In this framework it is possible to have either spontaneous or explicit CP violation in the scalar sector, depending on the regions of parameter space corresponding to the different possible vacua of the S3 symmetric potential. We list all possible vacuum structures allowing for CP violation in the scalar sector specifying whether it can be explicit or spontaneous. It is by now established that CP is violated in the flavour sector and that the Cabibbo-Kobayashi-Maskawa matrix is complex. In order to understand what are the possible sources of CP violation in the Yukawa sector we analyse the implications of the different available choices of representations for the quarks under the S3 group. This classification is based strictly on the exact S3-symmetric scalar potential with no soft symmetry breaking terms. The scalar sector of one such model was explored numerically. After applying the theoretical and the most important experimental constraints the available parameter space is shown to be able to give rise to light neutral scalars at the $$ \mathcal{O} $$ O (MeV) scale.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3