Abstract
Abstract
Recently, Okuyama and Sakai proposed a novel holomorphic anomaly equation for the partition function of 2d Yang-Mills theory on a torus, based on an anholomorphic deformation of the propagator in the bosonic formulation. Using the boson-fermion correspondence, we derive the formula for the deformed partition function in fermionic description and give a proof of the holomorphic anomaly equation.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference21 articles.
1. E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [INSPIRE].
2. D. J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].
3. M. R. Douglas, Conformal field theory techniques in large N Yang-Mills theory, in NATO Advanced Research Workshop on New Developments in String Theory, Conformal Models and Topological Field Theory, (1993) [hep-th/9311130] [INSPIRE].
4. R. Dijkgraaf, Mirror symmetry and elliptic curves, in The Moduli Space of Curves, R. H. Dijkgraaf, C. F. Faber and G. B. M. van der Geer eds., Birkhäuser Boston, Boston, MA, U.S.A. (1995), pp.149–163.
5. M. Kaneko and D. Zagier, A generalized jacobi theta function and quasimodular forms, in The Moduli Space of Curves, R. H. Dijkgraaf, C. F. Faber and G. B. M. van der Geer eds., Birkhäuser Boston, Boston, MA, U.S.A. (1995), pp.165–172.