Abstract
Abstract
We present a new computation of the renormalized graviton self-energy induced by a loop of massless, minimally coupled scalars on de Sitter background. Our result takes account of the need to include a finite renormalization of the cosmological constant, which was not included in the first analysis. We also avoid preconceptions concerning structure functions and instead express the result as a linear combination of 21 tensor differential operators. By using our result to quantum-correct the linearized effective field equation we derive logarithmic corrections to both the electric components of the Weyl tensor for gravitational radiation and to the two potentials which quantify the gravitational response to a static point mass.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].
2. WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
3. BICEP2 collaboration, BICEP2 II: Experiment and Three-Year Data Set, Astrophys. J. 792 (2014) 62 [arXiv:1403.4302] [INSPIRE].
4. L.P. Grishchuk, Amplification of gravitational waves in an istropic universe, Zh. Eksp. Teor. Fiz. 67 (1974) 825 [INSPIRE].
5. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682 [INSPIRE].